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Since the early 1980s, short-term traffic forecasting has been an integral part of most Intel-
ligent Transportation Systems (ITS) research and applications; most effort has gone into
developing methodologies that can be used to model traffic characteristics and produce
anticipated traffic conditions. Existing literature is voluminous, and has largely used single
point data from motorways and has employed univariate mathematical models to predict
traffic volumes or travel times. Recent developments in technology and the widespread use
of powerful computers and mathematical models allow researchers an unprecedented
opportunity to expand horizons and direct work in 10 challenging, yet relatively under
researched, directions. It is these existing challenges that we review in this paper and offer
suggestions for future work.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Short term traffic forecasting has been a very important consideration in many areas of transportation research for more
than 3 decades. This interest is the direct result of an increasing need for developing user friendly applications which can
both provide accurate information to drivers and be used for signal optimization. The ability to provide such information
is the result of phenomenal technological and computational advances that have enabled researchers to collect data and sub-
sequently predict at very high temporal resolutions.

Both the technological aspects of this analysis (ITS Technology) and the analytical (data analysis), have been the focus of
countless research papers over the past few years (Adeli, 2001; Vlahogianni et al. 2004; Van Lint and Van Hinsbergen, 2012).
The combination of unprecedented data availability and the ability to rapidly process these data has brought on immense
development and acceptance of ITS technologies. At the same time, a novel research area, based on data driven empirical
algorithms, has been systematically growing in parallel to the well-founded mathematical models that are based on macro-
scopic and microscopic theories of traffic flow (Wang and Papageorgiou, 2005; Yuan et al., 2012; Treiber and Kesting, 2012;
Fowe and Chan, 2013; Kerner et al., 2013). This significant leap from analytical to data driven modeling has been marked by
an overwhelming increase of Computational Intelligence (CI) – Data Mining (DM) approaches to analyzing the data.
Researchers have moved from what can be considered as a classical statistical perspective (the ARIMA Family of models),
to Neural and evolutionary computational approaches (Karlaftis and Vlahogianni, 2011).

Short-term traffic forecasting based on data driven methods is one of the most dynamic and developing research arenas
with enormous published literature. Interestingly, however, most of the research has concentrated on ‘testing’ alternative
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modeling approaches on short-term traffic data, possibly because of the data’s ready availability and the relative ease of
applying many of the available analytical approaches. This concentration leaves a number of important questions and chal-
lenges unaddressed or, relatively to the rest of the literature, under researched. In this paper we review existing research
with an explicit focus on identifying, briefly discussing, and offering information on 10 areas where we believe that the tech-
nological and analytical challenges lie for the next generation of short term forecasting research.
2. Short term traffic forecasting: a brief overview

Since the early 1980s, short-term traffic forecasting has been an integral part of most Intelligent Transportation Systems
(ITS) and related research. It concerns predictions made from few seconds to possibly few hours into the future based on
current and past traffic information. Most of the interest has focused on developing methodologies that can be used to model
traffic characteristics such as volume, density and speed, or travel times, and produce anticipated traffic conditions. The field
of short-term traffic forecasting has a life of 35 years (Ahmed and Cook, 1979); in the first part of its development, most – if
not all – of the research employed ‘classical’ statistical approaches to predicting traffic at a single point. Later, applications of
data driven approaches were the focal point in the literature, where a rich variety of algorithmic specifications – most times
creatively applied – were proposed. The weight placed recently on empirical computational intelligence-based approaches,
including Neural and Bayesian Networks, Fuzzy and Evolutionary techniques, can be considered as inevitable, particularly as
most classical approaches have been shown to be ‘weak’ or inadequate under unstable traffic conditions, complex road set-
tings, as well as when faced with extensive datasets with both structured and unstructured data.

Existing literature has been studied in 3 papers; the first, by Vlahogianni et al. (2004) provided a critical review of the
entire spectrum of the short-term traffic forecasting literature up to 2003, and underlined the complexities of several con-
ceptual, design and methodological issues involved in developing forecasting applications. The second and third, by Adeli
(2001) and van Lint and Van Hisbergen (2012), reviewed Neural Network and Artificial Intelligence (AI) applications to
short-term traffic forecasting, collecting and analyzing the literature using such approaches. To avoid overlaps with already
published work, in Tables 1–4 we summarize the available literature for the periods 2004–2006, 2007–2009, 2010–2011,
2012–2013 respectively, and categorize papers based on certain criteria that can give a good sense of where most research
effort has concentrated over the past decade.

From the overview it becomes clear that most effort has gone into: i. using data from motorways and freeways, ii.
employing univariate statistical models, iii. predicting traffic volume or travel time, and iv. using data collected from single
point sources. Recent developments in technology and the widespread use of powerful computers and mathematical models
allow researchers an unprecedented opportunity to expand horizons and direct work in 10 challenging directions. These are
presented following a top-down approach; the first and second challenges refer to the system’s characteristics (responsive-
ness and location of interest), that will integrate prediction models. The third challenge is dedicated to the problem of fore-
casting traffic and variable choice. Challenges 4 to 5 focus on data issues and the manner in which new technologies have
altered the available prediction datasets. Next, Challenges 6 to 9 refer to the methodological and modeling issues that are
involved with developing novel prediction algorithms. Finally, challenge 10 deals with the role of artificial intelligence mod-
els and on the manner of integrating such models into prediction schemes. These 10 challenges are reviewed and summa-
rized in Table 5.
3. The challenges

3.1. Challenge 1. Developing responsive algorithms and prediction schemes

Transportation agencies require forecasts that are robust to short and longer term changes in traffic conditions. In cases
where these changes are unexpected – accidents, and adverse weather conditions for example – traffic management systems
should optimize management and advisory strategies. Responsive predictions are very important, yet difficult to construct,
as the relationship between non recurrent (unexpected) events and short term traffic conditions is complex and several
times unclear (even the effects of weather on short-term traffic flow remains elusive). Forecasting algorithms that can incor-
porate the effect of non-recurrent conditions and provide accurate predictions will enhance the decision making capabilities
of traffic management systems, improve coordination between authorities, and help maintain a sustainable level of service.

Research on responsive traffic prediction schemes has focused on developing multi-regime models to account for the
shifts of traffic between congested and uncongested conditions (Vlahogianni, 2009; Kamarianakis et al., 2010). These models
have been also extended to incorporate the effect of accidents or adverse weather on predictions (van Lint and van Zuylen,
2005; Castro-Neto et al., 2009; Fei et al., 2011; Min and Wynter, 2011), yet with no straightforward results particularly with
respect to the effects of weather. Li and Chen (2012) and Li and Rose (2011) reported that the inclusion of rainfall (5 min
data) on the short-term travel time predictions may reduce forecasting inaccuracies and improve the model robustness. Inn-
amaa (2009) reported similar prediction performance for 5 min data – based on average relative metrics – for both ‘normal’
and adverse weather and road conditions. Tsirigotis et al. (2012) emphasized the marginal effect of rainfall on short-term
(10 min step) freeway speed predictability. Vlahogianni and Karlaftis (2012), using recurrence-based complexity measures,



Table 1
Literature for the period between 2004 and 2006.

Author(s) and Date1 Area Traffic Prediction Data Methodology

Parameter Step (min) Horizon (steps) Collection Approach Problem2 Model3 Comparison Inputs State-Space Optimization4

Cetin and Comert (2006) Motorway Speed 1 1 Detectors Univariate TS Statistical j Single j

Dion and Rakha (2006) Motorway Travel Time 1 2 AVI Univariate FA Statistical Single
Innamaa (2006) Motorway Travel Time 1 1 Detectors Univariate FA NN Multiple U

Lam et al. (2006) Motorway Volume day day Detectors Univariate FA Statistical U Single
Liu et al. (2006) Arterial Volume 1 1 Simulation Univariate FA Statistical Single
Quek et al. (2006) Motorway Density 1 60 Detectors Univariate FA NN U Multiple Fuzzy M
Shekhar and Williams (2008) Motorway Volume 15 1 Detectors Univariate TS Statistical U Multiple
Tsekeris and Stathopoulos (2010) Arterial Volume 3 1 Detectors Univariate TS Statistical U Single
Turochy (2006) Motorway Volume 15 1 Detectors Univariate PR Statistical Single
van Lint (2006) Motorway Travel Time 1 1 Detectors Univariate TS NN U Multiple U

Wang et al. (2006a) Motorway(U) Travel Time 1 20 Simulation Univariate FA Statistical U Multiple U

Xie and Zhang (2006) Motorway(U) Volume 5 1 Detectors Univariate PR Hybrid�� U Multiple U Wavelets M
Zheng et al. (2006) Motorway(U) Volume 15 1 Detectors Univariate FA Hybrid��/C U Multiple Bayesian O
Innamaa (2005) Motorway Travel Time 1 1 Detectors Univariate FA NN Multiple U

Jiang and Adeli (2005) Motorway(U) Volume 60 1 Detectors Univariate TS Hybrid�� Multiple Wavelets M
Kamarianakis et al. (2005) Arterial State 7.5 1 Detectors Univariate TS Statistical U Single
Kwon and Petty (2005) Motorway(U) Travel Time 15 1 Detectors Univariate FA Statistical Single
Oh et al. (2005) Motorway Travel Time 1 1 Detectors Univariate TS NN U Single Genetic M
Shang et al. (2005) Motorway Speed 2 1 Detectors Univariate TS Statistical Multiple
van Lint and van Zulen (2005) Motorway Travel Time 1 1 Detectors Univariate FA NN Multiple
van Lint et al. (2005) Motorway Travel Time 1 1 Detectors Univariate TS NN Multiple U

Vlahogianni et al. (2005) Arterial Volume 3 5 Detectors Multivariate FA NN U Multiple U Genetic I
Zhong et al. (2005) Motorway Volume 60 60 Detectors Univariate FA NN U Multiple Genetic I
Alecsandru and Ishak (2004) Motorway(U) Speed 5 4 Detectors Univariate FA Hybrid�� U Multiple U Genetic I
Chrobok et al. (2004) Arterial Volume 1 60 Detectors Univariate PR Statistical/C U Single
Ishak and Alecsandru (2004) Motorway(U) Speed 5 4 Detectors Univariate TS Hybrid�� U Multiple U Fuzzy I
Lin et al. (2004) Arterial Travel Time 1 1 Simulation Univariate FA Bayesian Multiple
Rice and van Zwet (2004) Motorway Speed 5 1 Detectors Univariate PR Statistical Single
Wu et al. (2004) Motorway Travel Time 3 1 Detectors Univariate FA Statistical U Multiple
Yang et al. (2004) Motorway Speed 5 10 Detectors Univariate TS Statistical U Single
Zhong et al. (2004) Motorway Volume 60 60 Detectors Univariate FA NN U Multiple j Genetic M

1 U: urban.
2 TS: time series, FA: function approximation, O: optimization, PR: pattern recognition, CL: clustering.
3 NN: neural network, Hybrid�/��: statistical/computational intelligence model as the basis, /C: combined forecasts.
4 Optimization of M: model parameters, I: input space, S: smoothing.
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Table 2
Literature for the period between 2007 and 2009.

Author(s) and Date Area1 Traffic Prediction Data Methodology

Parameter Step (min) Horizon (steps) Collection Approach Problem2 Model3 Comparison Inputs State-Space Optimization4

Castro-Neto et al. (2009) Motorway(U) Volume 5 1 Detectors Univariate FA Statistical U Single
Chandra and Al-Deek (2009) Motorway Speed 5 1 Detectors Multivariate TS Statistical U Multiple U

Ghosh et al. (2009) Arterial Volume 15 50 Detectors Multivariate TS Statistical U Multiple U

Hamad et al. (2009) Motorway Speed 5 5 Detectors Univariate FA NN Multiple U Spectral I/S
Huang and Sadek (2009) Arterial Volume 5 1 Detectors Univariate PR NN U Single
Innamaa (2009) Motorway Travel Time 5 4 Detectors Multivariate PR NN Multiple
Jintanakul et al. (2009) Motorway Travel Time 5 1 Simulation Univariate FA Bayesian Single
Karlaftis and Vlahogianni (2009) Arterial Volume/Occupancy 1.5 1 Detectors Univariate TS Statistical U Single
Sheu et al. (2009) Motorway Volume 1 1 Detectors Multivariate TS NN U Multiple
Srinivasan et al. (2009) Arterial Volume 15 1 Detectors Univariate FA NN U Multiple Fuzzy I
Szeto et al. (2009) Arterial Volume 15 1 Detectors Univariate TS Statistical Single
Tan et al. (2009) Motorway Volume 60 3 Detectors Univariate FA Hybrid�/C U Multiple NN O
van Hinsbergen et al. (2009) Motorway Travel Time 5 3 Detectors Univariate TS NN U Multiple U Bayesian M
Vlahogianni (2009) Arterial Volume 1.5 1 Detectors Univariate TS NN U Multiple U Genetic M
Wang and Shi (2012) Motorway Travel Time 1 1 Detectors Univariate FA Bayesian Multiple
Zou et al. (2009) Motorway Travel Time 5 1 Detectors Univariate FA NN U Multiple U

Chandra and Al-Deek (2008) Motorway Speed 5 1 Detectors Multivariate TS Statistical U Multiple U

Dimitriou et al. (2008) Arterial Volume 1.5 1 Detectors Univariate FA Fuzzy/C U Multiple U Genetic M
Guo et al. (2008) Motorway(U) Volume 1 1 Detectors Univariate TS Statistical Single
Li (2008) Motorway Travel Time 5 1 Detectors/AVI Univariate FA Bayesian Multiple
Stathopoulos et al. (2008) Arterial Volume 3 1 Detectors Univariate FA Fuzzy/C U Multiple
van Lint (2008) Motorway Travel Time 1 1 Detectors Univariate TS Hybrid�� Multiple U Kalman O
Vlahogianni (2008) Arterial State 1.5 1 Detectors Multivariate FA NN U Multiple
Zhang and Ye (2008) Motorway Volume 15 1 Detectors Univariate FA Hybrid�� U Single Fuzzy M
Ghosh et al. (2007) Arterial Volume 15 1 Detectors Univariate TS Bayesian Single
Innamaa (2009) Motorway Travel Time 1 1 Detectors Univariate FA NN Multiple U

Juri et al. (2007) Motorway Travel Time 1 1 Simulation Univariate TS Statistical Single
Sun and Zhang (2007) Network Volume 15 1 Detectors Univariate FA Statistical Multiple U

Vlahogianni (2007) Arterial State 1.5 1 Detectors Univariate FA NN U Multiple Genetic M
Vlahogianni et al. (2007) Arterial Volume 1.5 1 Detectors Multivariate TS Hybrid�� U Multiple U Genetic I
Xie et al. (2007) Motorway(U) Volume 5 1 Detectors Univariate FA Statistical U Multiple U Wavelets M
Zhang and Xie (2007) Motorway Volume 15 1 Detectors Univariate FA Statistical U Single

1 U: urban.
2 TS: time series, FA: function approximation, O: optimization, PR: pattern recognition, CL: clustering.
3 NN: neural network, Hybrid�/��: statistical/computational intelligence model as the basis, /C: combined forecasts.
4 Optimization of M: model parameters, I: input space, S: smoothing.
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Table 3
Literature for the period between 2010 and 2011.

Author(s) and Date Area1 Traffic Prediction Data Methodology

Parameter Step(min) Horizon
(Steps)

Collection Approach Problem2 Model3 Comparison Inputs State-
Space

Optimization4

Abu-Lebdeh and Singh (2011) Arterial Travel Time 5 1 Simulation Multivariate FA Hybrid�� Multiple U Bayesian I
Bustillos and Chiu (2011) Motorway Travel Time 15 1 Simulation Univariate PR Statistical U Single
Chang et al. (2011) Arterial Volume 5 1 Detectors Univariate TS Statistical Multiple
Chen et al. (2011) Arterial Volume 0.1 1 Detectors Univariate PR Hybrid� U Single Nature Inspired M
Djuric et al. (2011) Motorway Speed 5 6 Detectors Univariate FA Statistical U Multiple U

Fei et al. (2011) Motorway(U) Travel Time 1 1 Detectors Univariate TS Bayesian U Single
Heilmann et al. (2011) Motorway(U) Speed 15 8 ETC. Univariate FA Statistical Single
Hong (2011) Arterial Volume 60 1 Detectors Univariate TS Hybrid�� U Single Sim. Annealing M
Hong et al. (2011a) Arterial Volume 60 1 Detectors Univariate FA Hybrid� U Single Nature Inspired M
Hong et al. (2011b) Arterial Volume 60 1 Detectors Univariate FA Hybrid� U Single Genetic M
Ishak et al. (2010) Motorway Speed 0.5 1 Detectors Univariate FA Statistical Single 0
Khosravi et al. (2011) Motorway(U) Travel Time 5 1 Detectors Univariate FA Hybrid�� U Multiple U Bayesian M
Kuhn and Nicholson (2011) Motorway Volume 1 1 Detectors Univariate TS Statistical U Single
Li and Rose (2011) Motorway Travel Time 10 6 AVI Univariate FA NN Multiple
Min and Wynter (2011) Motorway(U) Volume/Speed 5 12 Detectors Multivariate TS Statistical Multiple U

Myung et al. (2011) Motorway Travel Time 5 1 Detectors/
AVI

Univariate PR Statistical Multiple U

Oh and Park (2011) Motorway Travel Time 1 1 AVI Univariate TS NN U Single Genetic /
Wavelets

M/I/
S

Simroth and Zähle (2011) Motorway Travel Time 1 1 GPS Univariate FA Statistical Single
Soriguera and Robusté (2011) Motorway(U) Travel Time 5 1 Detectors /

AVI
Univariate FA Statistical/

C
Single

Vlahogianni and Karlaftis
(2011)

Arterial Volume/Occupancy 1.5 1 Detectors Univariate TS Statistical U Single

Wang et al. (2011) Motorway Speed 5 1 Detectors Univariate PR Hybrid�� U Single Bayesian I
Xia et al. (2011) Motorway Travel Time 15 1 Detectors Multivariate TS Statistical Multiple Kalman O
Zhang et al. (2011a) Motorway Volume 5 1 Detectors Univariate FA Statistical U Single Nature Inspired M
Sun and Xu (2011) Arterial Volume 15 1 Detectors Univariate FA Statistical U Single
Boto-Giralda et al. (2010) Motorway Volume 5 2 Detectors Multivariate PR Hybrid�� U Multiple U Fuzzy/wavelets M/I/

S
Ghosh et al. (2010) Arterial Volume 5 1 Detectors Univariate TS Hubrid�� Single Wavelets I/S
Guo and Williams (2010) Motorway(U) Speed 5 1 Detectors Univariate TS Hybrid� Single Kalman O
Kamarianakis et al. (2010) Arterial Volume/Speed/

Occupancy
1.5 1 Detectors Univariate TS Statistical U Single

McCrea and Moutari (2010) Motorway Volume 15 1 Detectors Univariate FA Hybrid�� Multiple U

Stathopoulos et al. (2010) Arterial Volume 3 1 Detectors Univariate FA Fuzzy/C U Multiple
Stathopoulos et al. (2010) Arterial volume 3 1 Detectors Univariate FA Hybrid�/C Single Fuzzy O
Thomas et al. (2008) Arterial Volume 5 2 Detectors Univariate TS Statistical Single
Tsekeris and Stathopoulos

(2010)
Arterial Volume 3 1 Detectors Multivariate TS Statistical U Multiple

Xie and Zhao (2010) Motorway(U) Volume 15 2 Detectors Univariate FA Statistical U Single
Yang et al. (2010) Motorway Travel Time 15 1 AVI Univariate TS Statistical Single
Zargari et al. (2010) Motorway Volume 5 1 Detectors Univariate FA NN U Single Fuzzy/ Genetic M/I

1 U: urban.
2 TS: time series, FA: function approximation, O: optimization, PR: pattern recognition, CL: clustering.
3 NN: neural network, Hybrid�/��: statistical/computational intelligence model as the basis, /C: combined forecasts.
4 Optimization of M: model parameters, I: input space, S: smoothing.
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Table 4
Literature for the period between 2012 and 2013.

Author(s) and Date Area1 Traffic Prediction Data Methodology

Parameter Step(min) Horizon
(Steps)

Collection Approach Problem2 Model3 Comparison Inputs State-
Space

Optimization4

Celikoglu (2013) Motorway(U) Density 2 1 Detectors Univariate FA Hybrid�� Multiple U

Wang and Shi (2012) Motorway(U) Speed 5 1 Detectors Univariate FA NN U Single Chaos/Wavelets I/M
Mu et al. (2012) Motorway Travel Time 1 1 Simulation Univariate FA Statistical Single
Chan et al. (2013) Motorway(U) Speed 1 5 Detectors Univariate FA Hybrid�� U Multiple U Nature Inspired M
Guo et al. (2013) Arterial Volume 15 1 Detectors Univariate TS Statistical U Single Singular Value

Decomp.
S

Vlahogianni and Karlaftis
(2013)

Motorway(U) Speed 1 1 Detectors Multivariate TS Hybrid�� U Multiple Genetic M

Abdi et al. (2012) Motorway Volume 1 1 Detectors Univariate TS Hybrid�� U Multiple Fuzzy/Wavelets M/I/
S

Chan et al. (2012a) Motorway(U) Speed 1 1 Detectors Univariate FA Statistical U Multiple U Exponential I/S
Chan et al. (2012b) Motorway(U) Speed 1 1 Detectors Univariate FA NN U Multiple U n/a
Chang et al. (2012a) Motorway Volume 15 4 Detectors Univariate PR Hybrid� Multiple k-nearest neighbors I
Chen et al. (2012) Motorway(U) Volume 3 1 Detectors Univariate FA Statistical U Single Principal Comp. I
Cheng et al. (2012) Arterial Volume 5 1 Detectors Univariate TS Statistical Multiple U

Du et al. (2012) Network Travel Time 2 1 Simulation Univariate O Statistical Multiple U

Dunne and Ghosh (2012) Motorway Volume/
Speed

1 1 Detectors Multivariate FA NN U Multiple

Guo et al. (2012) Motorway Volume 15 1 Detectors Univariate TS Statistical Single
Haworth and Cheng (2012) Network Travel Time 5 1 AVI Univariate FA Statistical/

C
U Multiple U

Hong (2012) Arterial Volume 60 1 Detectors Univariate FA Statistical U Single Sim. Annealing M
Kamarianakis et al. (2012) Motorway(U) Speed 5 5 Detectors Univariate TS Statistical U Multiple U penalized estimation M
Khan (2012) Motorway Travel Time 5 1 GPS Univariate FA Bayesian Single
Li and Chen (2013) Motorway Travel Time 5 1 Detectors/

AVI
Univariate FA NN Multiple

Lu (2012) Motorway Travel Time 5 1 Detectors Univariate FA Bayesian U Single
Ma et al. (2012) Motorway Travel Time 1 1 Simulation Univariate PR Statistical U Single
Qiao et al. (2012) Motorway Travel Time 5 1 Bluetooth Univariate PR Statistical U Single
Sun et al. (2012) Network Volume 15 1 Detectors Multivariate PR NN U Multiple U penalized estimation I
Tchrakian et al. (2012) Motorway Volume 15 5 Detectors Univariate TS Statistical U Multiple
Tsirigotis et al. (2012) Motorway(U) Speed 10 1 Detectors multivariate TS Statistical U Multiple

Arterial Volume 5 1 Detectors Univariate FA Statistical Single
Xia et al. (2012) Motorway State 5 1 Detectors Multivariate CL Statistical Multiple
Ye et al. (2012) Motorway(U) Speed 0.01 60 GPS Univariate FA NN U Multiple
Zheng and Van Zuylen (2012) Arterial Travel Time 1 1 GPS Univariate FA NN Multiple U

1 U: urban.
2 TS: time series, FA: function approximation, O: optimization, PR: pattern recognition, CL: clustering.
3 NN: neural network, Hybrid�/��: statistical/computational intelligence model as the basis, /C: combined forecasts.
4 Optimization of M: model parameters, I: input space, S: smoothing.
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showed that under rainfall, a dissimilar freeway speed temporal evolution is observed that should be incorporated into
short-term traffic forecasting models.

Results reported so far indicate that both data and algorithmic specifications for responsive ITS applications are rather
vague. Additionally, the development of responsive prediction schemes requires extensive datasets where multi-source data
are fused, an often challenging task that can become rapidly obsolete (Khan, 2012). So far, the degree of modeling complexity
and adaptability, as well as the data’s spatio-temporal representations needed to support such schemes, have not been sys-
tematically assessed. Finally, a rather under researched issue in developing predicting schemes for ITS applications is to
determine which technologies and methodologies are capable of adapting to information taken from forecasting models.
The more complex the information on the anticipated traffic conditions, more robust structures of ITS applications – in both
a conceptual and functional level – are needed.
3.2. Challenge 2. Freeway, arterial and network traffic predictions

Until recently, most short-term traffic forecasting algorithms were built to function at a freeway, arterial or corridor level.
Short-term traffic forecasting at urban arterials forms a more complex problem than freeway predictions due to constraints
such as signalization. Data driven (CI and DM) approaches provide a structurally flexible alternative to account for adaptive
signalization’s unpredictability and the complexity of traffic flow’s self-organization, especially at areas where analytical ap-
proaches fail (Qiao et al., 2001). Predictions at a network level using data driven approaches remains a challenging task; the
difficulty in covering a sufficient part of the road network by sensors, as well as the complex interactions in densely popu-
lated urban road networks, are among the most important obstacles faced in short-term traffic forecasting. Few short-term
prediction applications have combined analytical modeling approaches such as cell transmission, with prediction models to
both forecast traffic and replicate traffic dynamics (e.g. queue spillback), based on predicted traffic (Szeto et al., 2009; McCrea
and Moutari, 2010). The problem of the number of sensors to be used and their placement in order to acquire the appropriate
network for traffic flow monitoring and estimation has been reviewed in Gentili and Mirchandani (2012). Hu and Peeta
(2009) and Ng (2012) have provided methods to determine the locations of vehicle sensors.

The ability of data driven approaches to develop spatio-temporal interrelations and predict traffic has been documented
in recent literature; Chen et al. (2012) and Haworth and Cheng (2012) provide multivariate kernel regression models to pre-
dict travel time in a network. Kamarianakis et al. (2012) implemented classical time series approaches for short-term speed
prediction in a network of motorways. Du et al. (2012) tested a data fusion and travel time prediction algorithm in a small
scale simulated network. Finally, Sun et al. (2012) implemented more robust artificial intelligence algorithms for short-term
traffic flow prediction in networks. However, research on incorporating network dynamics on short-term forecasting is still
at an early stage.
3.3. Challenge 3. Short-term predictions: from volume to travel time

Over the past 10 years, travel time prediction has attracted increasing interest because of its importance as a network
performance measure and its ease as a straightforward measure to inform road users on traffic conditions. Various univariate
and multivariate methodologies to model average travel time have been proposed, with most using neural networks
Table 5
Existing challenges in short-term traffic forecasting and relevant literature.

Challenges Relevant literature

1. Developing responsive algorithms and
prediction schemes

van Lint and van Zuylen (2005), Castro-Neto et al. (2009), Innamaa (2009), Fei et al. (2011), Min and
Wynter (2011), Li and Chen 2011, Li and Rose (2011), Kamarianakis et al. (2010), Khan (2012)

2. Freeway, arterial and network traffic
predictions

Hu and Peeta (2009), Szeto et al. (2009), McCrea and Moutari (2010), Ng (2012), Chen et al. (2012),
Haworth and Chen (2012), Kamarianakis et al. (2012), Du et al. (2012), Gentili and Mirchandani (2012),
Sun et al. (2012)

3. Short-term predictions: from volume
to travel time

van Lint (2008), Lu (2012), Fei et al. (2011), Zheng and van Zuylen (2012), Soriguera and Robusté (2011),
Khan (2012)

4. Data resolution, aggregation and
quality

van Lint et al. (2005); Wang et al. (2008), Qu et al. (2009), Ou et al. (2011), Chen et al. (2012), Haworth
and Chen (2012), Dunne and Ghosh (2012), Tan et al. (2013)

5. using new technologies for collecting
and fusing data

Oh et al. (2005), Jintanakul et al. (2009), Herrera et al. (2010), Van Lint and Hoogendoorn (2010), El Faouzi
et al. (2011), Bhaskar et al. (2011), Dion et al. (2011a,b), Ma et al. (2012), Fries et al. (2012)

6. Temporal characteristics and spatial
dependencies

Turochy (2006), Chandra and Al Deek (2009), Zou et al. (2009), Kamarianakis et al. (2010), Oh and Park
(2011), Wang et al. (2011), Cheng et al. (2012)

7. Model selection and testing Chandra and Al-Deek (2008, 2009), Chen et al. (2012)
8. Compare models or combine forecasts? Chrobok et al. (2004), Zheng et al. (2006), Sun and Zhang (2007), Stathopoulos et al. (2008), Tan et al.

(2009), Djuric et al. (2011)
9. Explanatory power, associations and

causality
Zhang et al. (2011a,b), Karlaftis and Vlahogianni (2011), Chan et al. (2012a,b), Yang et al. (2010),
Vlahogianni and Karlaftis (2013)

10. Realizing the full potential of artificial
intelligence

Sadek (2007), Adeli (2001), Miles and Walker (2006), Chowdhury and Sadek (2012)
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(Innamaa, 2009; Oh and Park, 2011; Li and Chen, 2013), Bayesian models (Fei et al., 2011; Khan, 2012; Lu, 2012), or hybrid
approaches (van Lint, 2008; Abu-Lebdeha and Singh, 2011). Travel time predictions are usually associated with longer fore-
casting horizons (Wang et al., 2006a,b; Innamaa, 2005; van Hinsbergen et al., 2009; Li and Rose, 2011), while interactions
between factors such as rainfall, heavy vehicles, speeds, type of day and travel time predictability have attracted some atten-
tion (Li and Chen 2013, Qiao et al., 2012).

The importance of predicting travel time variability as a mean for offering reliable traveler information has been system-
atically supported over the past decade (Kikuchi et al., 2005; Li and Rose, 2011). van Lint and van Zuylen (2005) proposed
metrics for quantifying long term travel time (un)reliability based on observed variability. Bayesian methodologies have also
been found to be appropriate – at least at a conceptual level – for quantifying travel time variability (Jintanakul et al., 2009;
Khan, 2012; Fei et al., 2011; Lu, 2012).

The extensive literature dedicated to short-term travel time prediction has been possible because of the increasing use of
new technologies in traffic data collection such as data Automatic Vehicle Identification systems (Dion and Rakha, 2006;
Yang et al., 2010; Li and Rose, 2011; Haworth and Cheng, 2012), Electronic Toll Collection (ETC.) systems linked to detectors
(Myung et al., 2011; Soriguera and Robusté, 2011), and Global Positioning Systems (GPS) (Simroth and Zähle, 2011; Khan,
2012; Ye et al., 2012; Zheng and Van Zuylen, 2012). Almost all of the above studies, with Haworth and Cheng (2012) as
the sole exception, have used motorway data. Emerging probe vehicle data collection technologies have led to interesting
applications in short-term travel time prediction, particularly when incorporating modules for fusing multi-source data
for predicting travel time (Soriguera and Robusté, 2011). van Lint (2008) described the manner in which travel time predic-
tion algorithms can be extended to network level information provision using multi-source data. However, there are still
several issues that need to be addressed; for example, if and how these data may be associated to a macroscopic view of
traffic conditions that is essential for most traffic management strategies. Further, the requirement for extended publicly
available datasets has been recently discussed (Zheng and van Zuylen, 2012), as has been the need for larger data coverage
(Lu, 2012; Fei et al., 2011), and the difficulties in fusing data from different sources in travel time prediction (Khan, 2012).

3.4. Challenge 4. Data resolution, aggregation and quality

The selection of the suitable forecasting interval (step) is critical and relates to the type of ITS application to which the
algorithms are to be integrated. Data collection technologies provide the opportunity for acquiring traffic data at a variety
of resolutions to match the needs for both traffic management and control applications. The higher the data resolution
(e.g. 30 s data), the larger the portion of noise of the time series of the traffic variables and, consequently, the more tedious
the traffic forecasting model development becomes (Qiao et al., 2003, 2004, Liu et al., 2011). Several approaches have been
utilized for reducing noise from time series before proceeding with predictions; these range from simple smoothing, to
wavelets and fuzzy algorithms (Jiang and Adeli, 2004; Boto-Giralda et al., 2010).

When dealing with data at high resolutions, a critical consideration is aggregation. Qiao et al. (2003) and Qiao et al. (2004)
discussed the effect of aggregation on ITS data, while Abdulhai et al. (2002), Oh et al. (2005), Chen et al. (2012) and Dunne
and Ghosh (2012) demonstrated the effect of data aggregation level on forecasting model performance. Aggregation has been
found to have direct implications on the temporal structure of a time series because it eliminates variation in the data and
Table 6
Directions for further research in relation to the 10 challenges.

Challenges Further research directions

1. Developing responsive algorithms and
prediction schemes

Weather and incident responsive algorithms, enhancing the efficiency of online computations using
artificial intelligence, standardizing the requirements with regard to the spatial and temporal data
coverage

2. Freeway, arterial and network traffic
predictions

Focus on network level predictions, Synergy with traffic flow theory and models

3. Short-term predictions: from volume
to travel time

Producing existing or novel measures of traffic performance using data from multiple sources or using
novel technologies for collecting and fusing data

4. Data resolution, aggregation and
quality

Determining the optimal degree of aggregation in relation to the short-term forecasting application,
Quality of probe data

5. Using new technologies for collecting
and fusing data

Testing the efficiency of new technologies for collecting traffic data, Reliability under all types of traffic
flow (constrained, unconstrained), market penetration, standardization, cost, privacy issues, Effectiveness
of fusing strategies

6. Temporal characteristics and spatial
dependencies

Focus on network level spatio-temporal approaches, fusing modeling and data-driven algorithms

7. Model selection and testing Establishing synergies with statistics for estimating model specification and fit.
8. Compare models or combine forecasts? Introducing combinations of forecasts for multiple steps ahead predictions, testing the reliability of

combinations of forecasts over single model predictions
9. Explanatory power, associations and

causality
Synergy with statistics and computationally intelligent algorithms to enhance the transparency of data-
driven approaches

10. Realizing the full potential of artificial
intelligence

Introducing intelligence to data collection and storage, traffic analysis, optimization modeling and
decision making
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alters most properties, including non-stationarity and nonlinearity, that exist at the disaggregated level (Vlahogianni and
Karlaftis, 2011). However, there is no solid approach to select the appropriate aggregation level for ITS applications. Aggre-
gation remains an indispensable step in most ITS systems and cannot be disregarded; but, since the consistency of statistical
characteristics is a desirable property, further research is needed to determine the optimal aggregation level with respect to
different modeling applications.

Data quality in short-term traffic forecasting mainly discusses the completeness of the available datasets. Haworth and
Cheng (2012) underlined the uncertainty induced to short-term traffic forecasting attempts from missing data. Missing data
need careful consideration in order to select the appropriate imputation strategy – online or offline – for efficiently dealing
with them (Chen et al., 2012; Tan et al., 2013). Wang and Zou (2008) reviewed both single and multiple imputation strategies
for real-time applications and assessed their effect on travel time prediction. However, the literature does not provide a clear
cut result on the effectiveness of these strategies in terms of different algorithmic complexity levels (van Lint et al., 2005, Qu
et al., 2009, Chen et al., 2012).

A novel problem faced in short-term traffic forecasting is the manner by which to assess the quality of probe vehicle data-
sets particularly at urban arterials where constraints such as signalization form a complex data collection setting. A recent
report proposed vehicle probe sample size and standard deviation as well as the ratio of whether travel time or speed is pro-
duced from fusing data as quality indicators (MAG, 2011). Ou et al. (2011) emphasized that, when it comes to probe vehicle
data, the higher the percentage of probe vehicles the greater the accuracy and reliability of fusing algorithms.

3.5. Challenge 5. Using new technologies for collecting and fusing data

Short-term traffic forecasting algorithms are usually data intensive approaches and, consequently, are directly dependent
on the availability of systems and technologies for data collection. Several studies have systematically reviewed data collect-
ing methodologies, particularly as it pertains to collecting section based data such as travel time (Zhang et al., 2011a,b).
Departing for the classical loop detector data collection that is well-documented and researched, there are currently a variety
of sources to collect traffic data such as video based technologies (Buch et al., 2011). Recently, wireless communication infra-
structures and navigation technologies have revolutionized the manner by which we conceive data collection and data cov-
erage. These technologies: (i) collect vehicle positions, (ii) infer relevant information concerning vehicular kinematic
characteristics and congestion, and (iii) provide congestion information to drivers (Marfia et al., 2012). We note that research
integrating new data collection technologies is still growing and the entire spectrum of new technologies has not yet been
evaluated; as an example we note the mobility pattern information obtained from social media.

Among the challenges in dealing with multiple data sources is how to fuse them to construct ITS oriented datasets. As Van
Lint and Hoogendoorn (2010) underlined, data to be fused encompass two dimensions: i. spatiotemporal semantics (data
point or section measurements), and ii. aggregation level (single event or aggregated over a given period of time); these
dimension impose certain complexities to the problem of data fusing from multiple sensors. El Faouzi et al. (2011) provided
a review of data fusion approaches applied to traffic monitoring and forecasting.

Although there are no obvious barriers in making new technologies part of the data collection process, there are still sev-
eral uncertainties that need to be carefully addressed due to the lack of maturity both from the technological and modeling
aspects. A typical example is how to account for the bias induced by market penetration of such technologies. Oh et al. (2005)
and Jintanakul et al. (2009) reported the difficulty in using probe vehicle technologies because of low market penetration.
Herrera et al. (2010) suggested that a 2–3% penetration of cell phones in the driver population is enough to provide accurate
traffic measurements. Ma et al. (2012) tested different penetration rates of vehicle infrastructure integration technologies for
evaluating the effectiveness of travel-time predictions. Recently, Bhaskar et al. (2011) provided a methodology based on
fused data from loop detectors and some probe vehicles for estimating travel time.

Critical consideration should be given to the effectiveness of such technologies with respect to different road settings. The
question that arises is whether these technologies are directly applicable as well as equally efficient and reliable for all types
of flow (constrained and unconstrained), and road network settings (freeways, motorways and urban networks). Dion et al.
(2011a) emphasized the need to assess new technologies in a framework of actual systems that encompass multiple ITS
applications. Later, Dion et al. (2011b) provided a virtual testbed to assess probe vehicle data generation by IntelliDrive vehi-
cles, within a microscopic traffic-simulation environment. Issues such as cost and privacy, risks induced by multiple stake-
holder involvement in data collection, lack of standardization, interactions with data fusion techniques and so on, must be
addressed (Fries et al., 2012).

3.6. Challenge 6. Temporal characteristics and spatial dependencies

Identifying spatial and temporal flow patterns has been an important consideration in short-term traffic forecasting re-
search. Several papers have supported the improvement of predictions due to the incorporation of upstream or downstream
traffic information (Chandra and Al-Deek, 2009; Kamarianakis et al., 2010). Research attempts have also distinguished be-
tween freeways and urban arterials due to the constraints imposed by signalization and other control measures that alleviate
traditional perception of periodicity (monthly, weekly, daily or even hourly periodicities) in traffic operations (Stathopoulos
and Karlaftis, 2003; Vlahogianni et al., 2005, 2007). Nevertheless, even in the simpler case of freeway operations, accurately
capturing spatial traffic features is still an open issue, as no generalized approach has been introduced. At a network level,
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limited effort has been put forth for incorporating traffic’s spatiotemporal evolution in the prediction process (Cheng et al.,
2012).

Spatiotemporal characteristics are usually introduced into the modeling phase through spatial and temporal correlations
(Stathopoulos and Karlaftis, 2003). Several other approaches have been also implemented; Turochy (2006) incorporated a
normalcy indicator to detect deviation from usual traffic patterns. A similar approach using k-nearest neighbors was fol-
lowed by Zou et al. (2009), and Wang et al. (2011), to detect travel time pattern similarity. Vlahogianni et al. (2006,
2008) based the similarity on an analysis of the dynamics of traffic and the changing statistical characteristics of the traffic
time series. Oh and Park (2011) introduced several entropy based measures to characterize travel time patterns and enhance
predictions.

The accurate spatio-temporal representation in the framework of prediction schemes is of ultimate importance in fully
integrating ITS applications. This may be done using either well established models that replicate traffic flow dynamics,
or by attempting to integrate spatio-temporal information into the short-term prediction algorithms. Each approach has
its own advantages and shortcomings; these should be considered when modeling short-term traffic flow. Nevertheless,
the ability to fuse traffic flow models and data-driven short-term forecasting approaches may enable a much improved rep-
resentation of the predictive information, and may enhance the decision making process particularly in cases of boundary
traffic flow conditions.

3.7. Challenge 7. Model selection and testing

Short-term traffic forecasting is considered as an excellent field for developing and testing complex prediction algorithms
because of the abundance of available data at very high time resolutions. Traffic forecasting has been viewed from different
angles: as a time-series problem (Cheng et al., 2012), a regression and function approximation problem (Dunne and Ghosh,
2012), a clustering (Xia et al., 2012), or pattern recognition problem (Sun et al., 2012), or even combination of the above
(Vlahogianni, 2009). The use of Bayesian inference as an alternative to classical statistical inference is one of the methodo-
logical advancements of the past 10 years (Ghosh et al., 2007), as is the implementation of multivariate (vector) time series
models (Chandra and Al-Deek, 2008, 2009; Ma et al., 2012; Tsirigotis et al., 2012), using both classical statistical models and
neural networks (Vlahogianni and Karlaftis, 2013).

Interest has concentrated on hybrid structures of Neural Networks (NNs) in short-term traffic flow prediction problems;
these structures frequently outperform simple autoregressive models particularly for modeling multi-dimensional datasets
and constructing models with various exogenous parameters (Van der Voort et al., 1996; Chen et al., 2001; Vlahogianni et al.,
2007). Hybrid structures whose basic model is either a statistical (Chang et al., 2012a,b) or a computational intelligent model
(Abdi et al., 2012), have been proposed. To optimize hybrid prediction structures, a vast range of optimization techniques
have been implemented; these include Probabilistic Principal Component Analysis (PPCA) (Chen et al., 2012), adaptive abso-
lute shrinkage and selection operator (LASSO) (Kamarianakis et al., 2012), fuzzy logic (Abdi et al., 2012), wavelets (Jiang and
Adeli, 2005), genetic algorithms (Hong et al., 2011b), simulated annealing (Hong, 2012), Bayesian (Wang et al., 2011) and
nature inspired algorithms (Hong et al., 2011a,b; Chen et al., 2011).

In this framework, two important modeling challenges must be considered. The first refers to model selection; the general
approach followed in short-term traffic forecasting is to select the model that provides the most accurate predictions based
on a collected dataset and regardless of the traffic’s underlying statistical characteristics (e.g. non-stationarity, volatility,
nonlinearity and so on), or whether certain modeling assumptions are violated or unrealistic (Chandra and Al-Deek, 2008,
2009). The selection of the proper modeling approach should be largely determined by the non-stationary and nonlinear
features of the spatiotemporal evolution of traffic (Vlahogianni et al., 2006). Several classical or more advanced tests of
non-stationarity and nonlinearity have been applied to traffic flow (Karlaftis and Vlahogianni, 2009 and Vlahogianni and
Karlaftis, 2011, 2013). Recent evidence in disciplines such as econometrics and finance, has demonstrated the need to jointly
consider non-stationarity and non-linearity in producing consistent short-term forecasting models.

The second challenge has to do with the selected model’s performance. Most researchers place larger emphasis on dis-
cussing the findings and neglect the need to account for the quality of their model (in terms of the properties of the error),
using even the most popular statistical diagnostics. This is of outmost importance in classical statistical modeling as a model
of adequate structure should have white noise residuals (Washington et al., 2010). This implies that any ‘‘strong’’ properties
in the error term – including serial correlation, volatility and so on – may indicate specification bias that can be attributed to
omitted variables or misspecification of the functional form (inadequate complexity of the structure). In transportation time
series applications, most artificial intelligence approaches (e.g. Neural Networks) rarely incorporate any testing of the prop-
erties of the error and the model specification. An exception is the work of Chen et al. (2012) that tested the properties of the
errors of the autoregressive models developed for traffic flow forecasting. Vlahogianni and Karlaftis (2013) applied popular
goodness-of-fit tests for serial dependence, normality, homoscedasticity and non-linearity on neural network time series
models.

In general, a researcher’s judgment of the accuracy or the error properties of a developed model is a difficult task; do we
want smaller errors or more random-looking errors? Do we want both of those occurring at a fair degree? It is generally pos-
sible for a model to demonstrate good fit to the data but not necessarily as high prediction accuracy. This may be the effect of
a variety of issues such as non-accounted patterns in data estimation or overtraining in NN. It is also common to have models
that may predict accurately, but fail in some or all error specification tests (serial independence, neglected nonlinearity, and
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so on). This evidently shows that the errors produced are not random but have a systematic pattern that will make future
predictions unreliable; such a model should be improved by possibly introducing a term to treat the variance along with the
mean of the time series models (Karlaftis and Vlahogianni, 2011). In either case, the modeler should not disregard the impor-
tance of goodness-of-fit tests and should be able to apply them regardless of the modeling approach followed.

3.8. Challenge 8. Compare models or combine forecasts?

Comparing both modeling specifications and results are imperative to support the usefulness of a proposed forecasting
scheme. Karlaftis and Vlahogianni (2011) discussed the usefulness and efficiency of current comparative studies in short-
term traffic forecasting and suggested that most comparisons conducted are not always fair, particularly when comparing
complex nonlinear to simple linear models. Further, there is a thin line between model accuracy, simplicity and suitability
(Occam’s razor). Kirby et al. (1997) suggested that accuracy is of great importance but should not be the only determinant in
selecting the appropriate methodology when predicting. Other issues should be considered including time and effort
required for model development, skills and expertise required, transferability of results, adaptability to changing temporal
behavior and so on (Kirby et al., 1997; Smith and Demetsky, 1997; Vlahogianni et al., 2004).

Although selecting the ‘‘best’’ model among a set of baseline models through testing and comparisons is of outmost
importance, a practical alternative is to provide a model or algorithm or heuristic approach to combine predictions. Combin-
ing should be useful in cases where the modeler may not result in a single well-specified model, a common case in complex
data forecasting. This approach has been followed in a number of research efforts in traffic forecasting; Vlahogianni et al.
(2006) provided a statistical and traffic criterion for dynamically shifting between models but did not provide combined
forecasts. Zheng et al. (2006) combined forecasts from two neural networks using the Bayesian rule. Sun and Zhang
(2007) combined predictions from different prediction models, while Stathopoulos et al. (2008) used fuzzy logic to combine
forecasts. Tan et al. (2009) combined forecasts from three models using neural networks. Djuric et al. (2011) provided a prob-
abilistic model for combining forecasts from a set of baseline prediction models. The positive effects of combining forecasts
have been discussed in several papers; Chrobok et al. (2004) found improved prediction performance particularly for special
events, Zheng et al. (2006) emphasized the increased system adaptability when combining forecasting approaches, and
Djuric et al. (2011) discussed improvements in cases of sensor failures, a common problem in traffic monitoring systems.

Nevertheless, there are still issues that must be tackled; for example, in which cases should combined forecasts be used?
Some researchers that it should be done in cases of multiple step ahead traffic predictions with increased uncertainty. Others
may support the opposite, suggesting it is better to use in cases of very short-term predictions where we want to control and
reduce the errors. Further, what baseline methods are more appropriate in combining forecasts? This is mainly related to the
statistical characteristics of the data, the possible shifts and transitional behavior, as well as the complexities of the problem
setting at hand. Moreover, which approach is most efficient for combining forecasts? Interdisciplinary literature has shown
that averaging between different baseline predictions may form a simple and viable alternative (Clemen, 1989). However, it
should be carefully used as it may fail in cases where one of the baseline prediction methods significantly outperforms the
others. Finally, to what extent is the error reduced when combining forecasts? It is on the modeler to decide whether com-
bining forecasts is worth the effort and whether it does not provide significant prediction improvements.

3.9. Challenge 9. Explanatory power, associations and causality

Until recently, it was adequate to provide forecasting algorithms with increased average accuracy (Zhang et al., 2011a,b;
Chan et al., 2012a,b; Yang et al., 2004). However, as the need for a responsive traffic prediction scheme has emerged, there is
demand for algorithms that can accurately predict as well as explain certain phenomena; the explanatory power of the mod-
els is imperative to make them adaptable and responsive to dynamic traffic and road environment changes. A typical exam-
ple are weather responsive ITS applications. In such systems, weather is considered as an exogenous variable and the onset
of adverse weather conditions as the emergence of a non-recurrent incident that critically disrupt typical traffic patterns. The
ability to introduce exogenous information that explains – to some degree – traffic flow variability is imperative, but not a
focal point of previous research. Approaches that claim to be the most accurate (in terms of prediction error), are based on
advanced computational intelligence techniques which completely disregard the importance of developing synergies with
classical statistics that will help increase model explanatory power (Karlaftis and Vlahogianni, 2011). Many statistical con-
structs and tests can be very effective in assessing input–output characteristic relationships and investigating causalities that
are extremely useful in research (Vlahogianni and Karlaftis, 2013).

3.10. Challenge 10. Realizing the full potential of artificial intelligence

Artificial Intelligence (AI) is the key technology in many of today’s transportation applications (Miles and Walker, 2006).
The advantage of AI applications over other alternatives lies in their interdisciplinary nature and ability to straightforwardly
combine forecasts, ease of modeling and computing, and relative associated autonomy (Karlaftis and Vlahogianni, 2011).
However, the development of efficient AI transportation systems is complex; the challenge lies in creating mechanical intel-
ligence and, at the same time, understanding the information basis of its human counterpart (Waltz, 1997).
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There has been increased interest among both researchers and practitioners for exploring the feasibility of applying arti-
ficial intelligence (AI) paradigms in improving the efficiency, safety, and environmental-compatibility of transportation sys-
tems (Sadek, 2007). AI techniques have been used in various aspects of short-term traffic forecasting such as prediction
algorithms, model fusing, and optimization techniques for analytical models. Until now, AI applications have been limited
to specific modules of ITS applications, especially for data analysis and prediction. Such applications have not been devel-
oped as standalone systems that can cover the full range of processes involved in prediction schemes, including data collec-
tion and storage, analysis, prediction, decision making; this may limit their efficiency. Chowdhury and Sadek (2012) discuss
the skepticism among transportation practitioners regarding the ability of AI to help solve some of the problems they face.

In the new conditions that are formed by the integration of novel technologies for gathering traffic data, there is a need for
new modeling paradigms that are robust to data imperfections, are hypotheses free and are flexible to cope with the need for
providing accurate and on time predictions. In this framework, AI is a strong candidate that may provide novel and easily
deployable data mining tools.
4. Conclusions

In this paper we revisited much of the literature on short-term traffic forecasting and its advancements over the last dec-
ade. The literature was analyzed based on a set of ten challenges stemming from the changing needs of ITS applications.
Findings support the shift of research interest towards: i. responsive forecasting schemes for non-recurrent conditions, ii.
developing prediction systems with increased algorithmic complexity, iii. attempting to understand data coming from novel
technologies and fuse multi-source traffic data to improve predictions, and iv. the applicability of AI methodologies to the
short-term traffic prediction problem. The analysis of the literature with relation to the 10 challenging issues has shown that,
although much work has been conducted in short-term traffic forecasting, there are still important research directions that
will attract the interest of researcher in the following years (Table 6).

The literature on short-term traffic forecasting has covered and used an impressive amount of models and data specifi-
cations. Nevertheless, researchers seem to be unprepared to answer two important questions: are we confident that our
models are better, in terms of accuracy, than models developed 30 years ago? And, what have we learnt about prediction
that has significantly changed our perception for traffic operations and management? The above imply that both research
and practice in short-term traffic forecasting are now entering a maturity phase, where models and methods must be crit-
ically assessed to produce solid knowledge on the concepts and processes involved with short-term traffic forecasting.

Towards this direction, decisive steps into the future are necessary to confirm the usefulness and merits of recent find-
ings. The first step is towards enhancing the performance and explanatory power of the prediction models through synergies
with classical statistics. Statistics and artificial intelligence should act complementarily to improve i. core model develop-
ment and goodness of fit, ii. analysis of large data sets and iii. causality investigation. Regarding methodological issues,
researchers should exchange knowledge between classical statistics and advanced artificial intelligence approaches to assure
model performance and explanatory power. Researchers should also respond to modeling advances for efficiently treating
complexities stemming for large datasets. Synergies may also be extended to the use of nature inspired algorithms and
meta-heuristics. Several methodological aspects of short-term traffic forecasting – particularly concerning computational
intelligent methods – involve tedious optimization requirements; in such cases, nature inspired optimization techniques
(simulated annealing, genetic algorithms ant colony optimization and others) may assist to overcome drawbacks of tradi-
tional optimization (Teodorović, 2008).

The second step is to develop and use testbeds and test data for testing and comparing algorithms. As new sensors, elec-
tronics, communications, and information processing technologies continue to advance at phenomenal rates, the field of
transportation management and operations increasingly looks to new technologies to solve problems such as congestion.
This leads to an increasing rate of developed forecasting algorithms that need to be tested and evaluated with respect to old-
er approaches on a common data set. Interestingly, although there are large traffic data sets publicly available that may serve
as testbeds (a typical example may be the Mobile Century Data) (Herrera et al., 2010), these have not attracted significant
interest from the traffic forecasting research community. Test beds of varying size and complexity are a critical tool for eval-
uating ongoing research and may serve as a proof-of-concept tool.

Finally, the third step refers to advanced computing and Internet of Things (IoT). Most short-term traffic forecasting appli-
cations have a rather reactive role. Placing weight on integrating the technological advances for storing and computing may
enable a more efficient and proactive role for short-term traffic prediction systems. Concepts such as cloud (computation,
software, data access, and storage services) that do not require end-user knowledge of the physical location and configura-
tion of the system that delivers the services, and parallel computing (clusters of computers), can enable the implementation
of complex network level short-term traffic forecasting algorithms. Moreover, as most vehicles are now equipped with high
end technologies and modules, and many road users may send information through mobile phones (Wi-Fi, Bluetooth, GPS),
the field of traffic predictions is changing. In this framework, communication protocols that will enable vehicles to contin-
uously gather and transfer information on the road environment as well as their unique kinematic characteristics may rev-
olutionize the way we think about short-term traffic forecasting. Further, integrating information sourcing from social
networks and peoples’ voluntary contribution to transportation systems (e.g. tweets on extreme conditions occurrence)
may significantly improve the adaptability of short-term traffic forecasting algorithms.
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In the future, where every moving subject (both humans and machines) may have a unique identity and operate in smart
social and environmental settings, the future of short-term traffic forecasting seems intuitively challenging. In this frame-
work researchers are deemed to excel not only in the traffic engineering arena, but also in the interdisciplinary field of data
analyses for the realization and evaluation of advanced ideas. Short-term traffic forecasting may enjoy a prolific future in the
ITS field only if researchers can cautiously adopt a unified perspective of modeling, computing, testing and explaining traffic
phenomena.
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